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Bidirectional solitons on water
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A theory of bidirectional solitons on water is developed by using an integrable Boussinesq surface-variable
equation. We present an explicit transformation between the system and a member of the Ablowitz-Kaup-
Newell-Segur system, and derive an exact multisoliton solution by using a Darboux transformation. The phase
shifts and the maximum wave heights during the interaction are studied for two-soliton overtaking and head-on
collisions. They agree with the Korteweg-de Vries solution for overtaking collision and the perturbation
solution for head-on collision.
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. INTRODUCTION (a) The{Z, u} system: the depth-mean velocity basis
Bidirectional solitary waves on water has been an inter- L+ V-[(1+u]=0, (1)
esting issue for many years, and enjoys an extensive litera- . _——
ture[1,2], partially because the model can be used to study Ut u-Vu+Vi=3Vau,. )

the run-up of ocean waves such as tsunami waves on dykes (b) The {Z, U} system: the bottom variable basis
and damd3]. Existing literature solves the problem for an '
approximate solution by using a perturbation method on the LAV [(1+ ) ugl=3V - Vuy, (3
Euler equatiorf1,2].

In 1965, Zabusky and Kruskal introduced the concept of a
soliton for the Korteweg-de Vrie&KdV) equation[4]. Two
years later, by using the inverse scattering method on the

u0t+U0~VUO+V§=%V2u0t. (4)

(c) The{¢, ﬂ} system: the surface variable basis

Schralinger equation, Gardneet al. (GGKM) solved the LAV [(1+0)0]=—1Lv. V2, (5)
KdV equation for exacN-soliton solutiong 5], which can be
used to model the interaction of unidirectional solitary waves U,+U-VUu+ V=0, (6)

on water. Their discovery establishes the mathematical foun- . A

dation of the unidirectional water wave interaction. The KdVwhereV = (4, ,d,) is a gradient operator, ang u, andu are
equation is the leading-order approximation of the Eulerdepth-mean, bottom, and surface velocities, respectively. All
equation from a perturbation scheme under the assumptidhree systems allow solitary wave solutions and their inter-
that the wave height is relatively small and the wavelength igctions, such as overtaking, head-on, and oblique collisions.
relatively long compared with the water depth. It also as-But for some systems, the collisions may not be clean. By
sumes that the wave propagates in one direction, which is nélean we mean that the solitary waves do not change their
a good assumption to model the reflection of water waves ofihapes and speeds after the collision and they are not fol-
a vertical wall. For reflection of water waves, we need aloWed by any dispersive tail. The only changes after the in-
model that allows the bidirectional wave interactions, inclug-teraction are their phase shifts. Whether the collision is clean

ing head-on and overtaking collisions. As far as we know, £€PeNds on the integrability of the system. If a system is
solid mathematical foundation of the bidirectional Water'megr"’lble and has exact solutions, then the interaction of

. . . : olitary waves will be clean. For clarity, in this paper we
wave mter{:\ctlon has not been well-established. That is th%efinesolitonto be aclean interacting solitary wavén an
focus of this paper.

. . , integrable system. Only when the collision is clean and the
. The Bo_ussmesq one-equation mode| defined by('?ﬁ?- solitary waves behave like particles during the interaction do
in Sec. V is well known to be integrable and allows bidirec-\ g c4j them solitons. One has to be aware of the difference
tlona] soliton squuoniG], .but few people .reahze that. itS petween the two concepts of solitary wave and soliton. A

for water wavegsee Sec. V of the paper for details not be a soliton depending on whether or not the system is
Weakly nonlinear and weakly dispersive waves on a layeintegrable and the interaction is clean.
of water with a uniform deptliscaled to be lcan be mod- Given the fact that the three systems are widely used by

eled by generalized Boussinesq equatiofisin which wave  engineers to study water waves during a coastal and harbor
elevation{ and velocity vectou=(u,v) are unknown func- design, the mathematical properties such as integrability and
tions of space X,y) and timet. Picking different velocity  solitary wave(soliton) solutions of the three systems are cru-
results in different systems. Depth-mean, bottom, and surfaagal to us. Ironically our understanding about the integrability
velocities are three popular choices of the velocity variablesof the three systems is so poor that we only know the prop-
The corresponding model equations derived by Wu andrty of the reduced1+1) version of the surface-variable
Zhang are as follow§8]. system,
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Gt [(1+ DUTe= = 5 Uy () —\u+3u’+{=0. (10

U+ Uly+ £, =0. (8)  After eliminating { from these equations, integrating once
more results in

This system, thereafter referred to as syst@&ni8), has been
shown to be integrable and has three Hamiltonian structures
[9,10]. The integrabilities of the origingR+1) version of(c)
and two other systemga) and (b), are open questions. A
recent paper obtains some interesting and exact solutions of

u2=2u2(2 +2—u) (2N —2—u). 1D

This equation has a solitary wave solution as

2_
system(c) by using the Painlevmethod[11]. In fact, system Ug(S;\)= 20— , (12)
(7),(8) is shown to be equivalent to the Broer-KaupK) N+cosh/3(A°—1)s

system[10]. In this paper, we show that the system is also

equivalent to a member of the Ablowitz-Kaup-Newell-Segurwhere the subscripB indicates the solution of the Bouss-
(AKNS) system. Unlike the KdV equation, systd,(8) is inesq equation. This solution agrees with the one in an im-
derived without the assumption that waves propagate in onglicit form given in Ref.[8]. Substituting the solution of
direction. Since the system is integrable, allows soliton soluvelocity into Eq.(10) gives the wave elevation as

tion, and is bidirectional, it is therefore a natural candidate

for modeling bidirectional solitons on water. )= 2(N2=1)[1+\coshy3(A°—1)s] 13
With system(7),(8) as our model, we find that its bidirec- {a(Sih) = [A+cosh/3(\2—1)s]? . 13

tional soliton solution can be obtained from the Dirac equa-

tion, i.e., the AKNS spectral problem. The Sctiinger equa-  hereafter referred to as thBoussinesq solitonThe wave

tion is the first ordinary differential equation that can be usedspeed\ and the wave amplitude is found from Eq.(13) to
to derive soliton integrable equatiofi2]; the AKNS system  nave the relationship

is the second ongl3]. But no one has found that a member

of the AKNS hierarchy can be used to describe bidirectional A=1+3a. (14
solitons on water. There is extensive literature on the study

of the solution of systen(7),(8) or the BK systen{14], but  Integrating the wave elevatio(i3) over the whole space
no one has linked the solutions to the bidirectional solitonglomain gives us the mass under the soliton

on water. About 35 years after GGKM, we find that the

AKNS system can be used to generate bidirectional solitons * 4 4

on water. The solution agrees with that of the KdV equation Ms(A)= f_mgB(S;k)dsz ﬁv)‘z_ = EV(l“LaM)a'

up to the same level of the perturbation scheme for the uni- (15)
directional solitons. Existing literature uses two unidirec-

tional solitons from the KdV equation and an interacting Differentiating Eq.(13) twice and evaluating at the origin
term from the perturbation scheme to describe the head-oives us

interaction[2]. To the best of our knowledge, our solution is

the only one that is botexactand physically meaningfufior {R(0N)=—6(2—N)(A—1)2 (16
water waves.

In this paper, we study bidirectional solitons on water byTherefore, the soliton has a single peak whera2 and
using the model of systet(?),(8). The properties of a single double peaks wheR>2. The soliton appears to have some
soliton are presented in Sec. Il. In Sec. lll, a multisolitonremarkable features. It is single-peaked when the wave am-
solution is derived by using the Darboux transformation onplitude is not larger than 2, and double-peaked when the
an equivalent AKNS system. The mechanics of soliton interwave amplitude is larger than 2. As is well known, the
action is discussed in Sec. IV. A comparison with the BoussBoussinesq model is only valid for the water waves with
inesq one equation is given in Sec. V. Finally, we concludesmall amplitude, i.e., wave amplitude smaller than water

the paper in Sec.VI. depth(scaled to be 1 heyeTherefore, the new feature of the
double-peaked soliton is not physically meaningful for the
Il. SINGLE SOLITON SOLUTION water wave.

Under the assumption of unidirectional wave propagation,

We now study the properties of a single soliton, such aggs.(7) and(8) can be further reduced to the KdV equation
shape, mass, and the relationship between the wave speggl a perturbation schenjé5s],
and the wave amplitude.

The soliton solution can be obtained by settifg £(S) Lt Lt 308+ 2 =0, (17
and u=u(s), wheres=x—\t and \ is the undetermined
wave speed. Substituting these relations into Efjsand(8) ~ Which has a solitary wave solution
and integrating the resulting equations once under the regu- \/_
larity condition at infinity, we obtain gK(s;A)zasecI‘f%s, S=X_A, A=14

_)\§+(1+§)U:_%u551 9 (18)
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where the subscrigf indicates theKdV soliton Integrating Here we adopt a new approach and convert the system to a
the wave elevatiori18) over the whole space domain gives member of the AKNS system and obtain a much cleaner

us the mass under the KdV soliton, version of the multisoliton solution.
Introducing the transformation
* 4 4
mK(x):f Lk(sih)ds= —=2(A—1)=—=Va, q=e/'%  r=—(1+¢—ju e i (25)
e V3 V3
(19  or
which is slightly smaller than the masg; under the Bouss- Oy )
inesq soliton. u=—, {=-1-qr+zuy, (26)

The relations between the wave speednd the wave a
amplitudea are the same for both the Boussinesq and KdVWe have an equivalent system fprandr,
solitons, i.e.A=1+a/2. A comparison between the Bouss- L )
inesq soliton(13) and the KdV soliton of Eq(18) shows that Gt t 20— 9T —q=0, (27)
they agree very well for the waves with small amplitude

1 2, . _
except that the former is slightly fatter. M= 2l qrotr=0, (28)

which is a member of the AKNS hierarchy. It is well known

With scaling transformation, -\ q
= = T =
a - b=MY U= (ni)T M ( r A), (29
7X—>X, 7t—>t, (20
N2+ ! + ! A L
— — r — —_——
Egs.(7) and(8) become 2d"" 3 a= 5%
A V=Ng N= 1 11
§t+[(1+§)u]x:_zuxxxv (21) )\r+§rx \2— Eqr_g
Ug+ uuy+ Z,=0. (22 (30

The Darboux transformation on the AKNS system given

The Lax pair of the system is ) ;
in Ref.[17] is as follows. Let

¢xx:(7\2+)\u+%u2_§_1)¢a (23 n
¢'=Th, T=A"+> T T-=(a2j_1 azi)
¢t:4lux¢+()\_%u)¢X' (24) , j=1 ! ' ! b2j*l bzl '
31
By using the transformation (3Y)
L wherel is a 2X 2 identity matrix andg is a solution of Egs.
u=-v, {=-1+w—s3uy, (29) and(30); then ¢’ is a solution of the equation
we can convert the system to the BK system, d.=M'¢', $/=N'¢', (32)
0= 5 (V2 H2W—vy)y, whereM’ andN’ are the same ad andN in Egs.(29) and

(30), but withq, r, q,, andr, replaced byg’, r’, q,, and

W= (VW FWy), . r

.-
In Ref. [16], we solve the BK system by using the Dar- W€ assume#\; fori#j, i=12,...,2, and denote
boux transformation and_ obtain a mt_JItlsollton _solutl_on. But b1j=B1GN)), baj=daX\)).

the result produced with a recursive algorithm is very

lengthy for interaction among a large number of solitons.We define a &< 2n matrix H to be the following:

M o AN TMhan ANTPhin N TPhpn 0 by dan
)\2_1¢1,2 )\2_1¢22 )\2_2¢1,2 )\2_2¢2,2 e 1o dan

H= : (33
Mo ldrm ANnldom MnZdim Anldom 0 bim  dom
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Solving the equations ’

u=q—):, (=—-1-q'r'+3u,, (39
ai _}‘2¢1,1 q
a, — N1, where
Hl | = =A,
: : q'=1+2a,, r'=—-1-2b;.
n
82n Nand1m a, andb; are defined by Eq(36).
N This is the solution for the interaction of an even number
by ~Mid2a of solitons in both directions. To obtain an odd number of
b, —N3as solitons, we can simply set the first eigenvalue to be 1 for a
Hl . |= . =B (34)  left-going soliton and-1 for a right-going soliton. In other
) words, an odd number of soliton solution can be treated as an
ban - Kgn¢2,m even number of solitons in which one of the solitons has zero
amplitude.
gives usa; andb;, i=1,2,3...,2n. Then The Darboux transformation provided in REE6] for the
BK system is of the first order of the eigenvalue. It can be
, , used to generate a two-soliton solution. For a
q'=q+2ay, r'=r—2b, (39 2(m+1)-soliton solution, the Darboux transformation has to
be appliedn+1 times. The result would be very messy. Here
where due to a nice property of the AKNS system, we only need to
apply the Darboux transformation once to generate a solution
detH, detH, with an arbitrary number of solitons. It only involves an
Q= Ger’ 1T den (36)  evaluation of the determinant of a@¢1)x2(m+1) ma-

trix. The result of a multisoliton solution is much cleaner
than that produced with the Darboux transformation of the

andH, is a 2nX2n matrix of H with the second column BK system[16].

replaced byA, andH; is a 2n X 2n matrix of H with the first
column replaced b.

For a layer of quiescent water without any waves, wave V- MECHANICS OF SOLITON INTERACTION
elevation is{=0 and velocity isu=0, and correspondingly For a single right-going soliton solution, we can take
q=1 andr=—1. Therefore, we takeg(r)=(1,—1) asour _qg andli=1 with the following eigenvalues and eigenfunc-

initial seed to implement the Darboux transformation. Withjons:
this initial seed, we have the following two sets of basic

solutions for the spectral proble(29),(30): NE=—1, ¢11=1, ¢o=—1,
$1;=COSIEj,  ¢p;=c;sinhg;+\cosl¥;, A3 =—N<—1, ¢1,=sinhE, ¢y,=ccosE—Asinhe.
j is an odd number, (8370 with some algebra, one may easily verify that the solution

given by Eq.(39) is identical to that obtained with direct
] } integration given by Eq912),(13).
p1j=sinhé;, ¢, =cjcoskE;+\;sinhé;,
j is an even number, (39 A. Overtaking collision

For a solution with two solitons overtaking collision, we
whereg;=c;(x+\;t) andc;= \/XJ-Z—l. The eigenvalua;is  take m=0 and|=1 with the following eigenvalues and
the wave speed of a soliton. The soliton is right-going jif  eigenfunctions:
<—1 and left-going if\;> 1. For a single left-going soliton,

its amplitudea and speed satisfy the relationship given by AN =—N<—1, ¢11=costE,
Eq. (14).

We now construct a multisoliton solution withn? left- ¢,1=CySiNhé; — N\ coslEy,
going and 2 right-going solitons. The power of the eigen-
value in the Darboux transformation is taken to fbem N5 =—Np<—N\p, ¢1o=Sinhé,,
+1. First we rank the solitons by their amplitud€er
speeds For the 2n left-going solitons, we assumg,, b2, 2= C,COSHE, — N ,Sinhé,,

>Nom_1>--->N1>1. For the 2 right-going solitons, we

assumeAy <Aj _,<---<Ay<-—1. With the eigenfunc- wherex,; and\, are two positive numbers. The solution to
tions defined in Eqs(37),(38) for both \; and A}, we can  system(7),(8), given by Eq.(39), can be written in a closed
obtain the soliton solution as follows: form as
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2(Np— \p)[C5— c2tanif & tantfé, — (N5 — M 2)tankPé, ]
u:

(c,—cqtanhg tanhé,)2— (N, — N ;) %tantté,
(=14 Ca— Cytanigytanie, + (A, —Ay)tanfe, | (Ao—hy)(Cataniey —Ay)(Co—Notaniey)| 1 @1
C,— Citanhé tanhé, — (N, — N\ g)tanhé, C,— Cqitanhé tanhé, — (A, — N g )tanhé, NI

3
fiZgCi(X—)\it), Ci:\/}\iz_l, i:1,2, )\2>)\1>1,

wherex andt have been converted to the original coordinates The asymptotic limit of the solution shows that it is sym-
before the scaling transformatidi20), A, and A, are the  metric about the origin. To study the wave properties near the
speeds of the two solitons, with, larger than\;. The soli-  center of an encounter, we find with some algebra that the
ton with the speed\, is taking over the soliton with the wave elevation and its first and second derivatives at the
speed\ ;. The process of overtaking interaction can be easilyorigin are

seen with the asymptotic limit of the solutiqd0),(41): as

t——oo, 1
- £00=| 1+ 51| (a,~ay),

LX) = La(X= Nt =A N 1) + {g(X—= Aot + A5 N,), £,(0.0=0,

UX, )= Up(X—Agt—=Ag;Ng) +Up(X— Aot + A5\ ,), {x(0,00=— Z(a,—a;)[8(a,—3a;) —4(a5— 7a,a; +9a3)
and ast— +, —ay(2a5—9a,a; +9a3)],

_ ) A wherea;=2(\j—1), i=1,2 are the wave amplitudes of two
SO = Lp(X =Mt Ay ihg) + Lp(X=Rot = Az:A), solitons. SolvingZ,,(0,0)=0, i.e.,

U(X,t)—)UB(X_)\lt+A1;)\1)+UB(X_Azt_AZ;)\2), ;:3_’_ % az?_7a2+ 9al + %(Zag—gazaﬁ— 9ai),
1 1
whereg(s;\) andug(s;\) are the wave elevation and sur- (43
face velocity of the single-soliton solution given by Egs.
(13),(12), and the total phase shift of the two solitons is We find the critical amplitude rati®; is very close to 3 for
given by the following: the small amplitude waves. The wave elevatioh-a0 has a
single peak ifa,/a;<R. and two peaks ih,/a;>R;.
The overtaking collision can also be modeled by the KdV

2 Ahp—1 equation(17). The solution can be obtained by applying Hi-
28, = B aI‘CCOS|I)\2_)\l , rota’s method6]; see, e.g., Ref2]. In the exact solution of
(A\i=1) the KdV equation, the phase shift of soliton 2 is given by
2 Mihp—l 2y 2y WAz VaY? (44)
2A,=———— arccosh——. (42 2 '

\3a —a;
V3(A\2-1) Ao Mg 2

] ] . ) One may easily show that the phase shift agrees to the lead-
Since the mass has been obtained previously in(E§l.as  ing order with that in Eq(42) given by our exact solution of
the Boussinesq equation. For the wave profilé=a0, the
4 critical amplitude ratio, derived in Ref2], is equal to 3 for
m=—y\—1, =12, the solution of the KdV equation, which also agrees to the
V3 leading order with our result in E@43).

the conservation of momentum can be easily verified by B. Head-on collision

For a solution with two-soliton head-on collision, we take
m=0 andl=1 with the following eigenvalues and eigen-
functions:

. ANAo—1
2miA =2myA,=3 arccoshﬁ.
27 M1
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AN =—-N\<-1, ¢y,=coskE;, ¢, =cisinhé;— N costE,,
N3 =Np>1, ¢1,=COSkE,, ¢y ,=CoSiNhé,+ N\ ,COSHE, .

The solution of systen(7), (8) given by Eq.(39) can be written in a closed form as follows:

2(N 1+ No)(N5— N2—catantPé,+ citanifé;)
u:

5 5 (45)
(cotanké,—cjtanké; ) — (N g+ p)
crtanhé,—cq tanhéy —A{— A\ Ni+Ny)(cqtanhé; —Nq)(ctanhé, + N 1
{:_1+ 2 rEZ 1 rEl 1 2 1+2( 1 2)( 1 rfl l)( 2 rEZ 2) +_Ux, (46)
cotanhé,—cytanhé; + N+, cotanhé,—cytanhé + N+, J3

3 3
§1=£01(X—)\1t), 62:£02(X+)\2t), Ci:\)\iz_l, )\i>1, i:1,2,

wherex andt are the original coordinates before the scalingwhere{g(s;\) andug(s;\) are the wave elevation and sur-
transformation. The soliton with speed is moving from face velocity of the single-soliton solution given by Egs.
the left to the right. The soliton with speed, is moving  (13),(12), and the total phase shift of the two solitons is
from the right to the left. Att=0, the two solitons merge given by

into a single peak. One may verify that(0,0)=0, i.e., the

solution is symmetric about the origin. Therefore, the maxi- oA 2 N+ 1
mum amplitude appears at the origin, i.e., 1=——— arccosh——,
g PP J V3(\3-1) 1A,
{max=(0,00=a;+a,+3a;5ay, (47)
2 NiAo+1
2A ,=———— arccosh———.

which agrees to the leading order with the solution obtained [an2_ 1y A+
by using the perturbation method in Refd,2]. For the 3(hz=1) v
head-on collision of two solitons with the same amplitude

. e 'The conservation of momentum can be easily verified by
a;=a,=a, the wave elevation @t=0 can be simplified and

given by . Nihp+1
2miA1=2myA,= garccoshm.
1 2
1 1
_ Z52 |
(0= 2a+ 26l secft 4 3a(4+a)x], If we expand the phase shift for small amplitude waves, i.e.,

a;<1,i=1,2, we will have the leading-order term,
and the velocity at=0 is zero for allx.

After the head-on collision, each soliton experiences a 1 1
backward phase shift. The asymptotic analysis of the solu- 28y~ ﬁ‘/a— ZAZ_ﬁ\/a—l'
tion (45), (46) leads to the following limits: ag— — o,
which again agrees with the result obtained with the pertur-
(X )= La(X—=Nt—=A1;Np) + {ag(X+ Aot + A5 N5), bation approach.
(48)
V. COMPARISON WITH THE BOUSSINESQ
U(X,t)—ug(X—Nt—A1;N7) —Ug(X+Not+As;N,), ONE EQUATION
49
“9 In addition to systen(7),(8), the Boussinesq one equation
+
and ast— “ gtt_gxx_%(é’z)xx_%gxxxxzo (52)
LX) = Ea(X =Nt +Ag N g) + Ep(X+ Aot = Az N o), is often used in the literature to model bidirectional solitons,

(50) but the result of the head-on collision is not physically mean-
ingful for water waves. The equation is integrable and has
U(X,t) = Ug(X—Nqt+A ;N ) —Ug(X+Aot—As;Ny), two Hamiltonian structures, see, e.g., REE8]. Its single
(51 soliton solution
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J3a a C=sinh(0/2)[ (k3+k3)sinh( 6/2) + 2k k,cosh 6/2)],
g(x,t)=asecﬁ7(x—)\t), A= 1+a<1+§

1 (Np+Np)2+12(k;—ky)?
has the same shape as that of the KdV soliton with the same a Eln()\l+ N,)2+12(K, +ky)2
amplitude, but travels at a slightly slower speed than the
KdV soliton. Its multisoliton solution has been provided by 1 1
Hirota [6]. For example, the solution of two soliton head-on \;=+\1+a;, A,=\1+a, k;==va;, ky==a,,
collision is given as 2 2

2 2 wherea, anda, are the amplitudes of the two solitons. The
g(x,t)=4klseCH§1+kzseCngJrCSGCHflseCng, soliton with amplitudea, is right-going. The soliton with
[cosh(6/2) + sinh( 6/2)tantg tanké, ] amplitudea, is left-going. One may verify that,(0,0)=0,
therefore the maximum amplitude during the head-on colli-
&= \/gkl(x—)\l)t, &= \/§k2(x+ Not), sion appears at the origin, i.e.,

{max= ¢(0,00=a;+a,+2vaa,tanf| —In ’
4 1+2a+3Vaa,+2a,+ \(1+ay)(1+ay)

=a;+a,—3aja,+0(a®) for a;=0(a), a,=0(a). (53

The result is smaller than the physically correct result giverwheree is the ratio between the water depth and the wave-

by Eg. (47). To understand this, one may treatanda, as  length. Sincau= ¢, , the magnitude of the velocity potential

the contribution from the potential energy of each soliton ands ¢=0(€). Assuming the wave is propagating in one direc-

the joint terma,a, as the contribution from the kinetic- tion, i.e.,d,= = d,+0(€), then the middle two terms in Eq.

energy of the two solitons. The kinetic-energy part of Eqg.(55) can be approximated by

(53) is negative. This is not physical for water waves. Due to 5 5 5

the symmetry, the reflection of a solitary wave on a vertical  (©3)x=(@f)xxt0(€%), (@@= (@) xxT0(€®).

wall can be treated as the head-on collision of two solitary

waves with the same amplitude. Since the Boussinesq ond/

equation(52) cannot be used to physically describe the pro—as

cess of the head-on interaction, it cannot be used to describe L= Lo 2(02) e L Crrss=0(€9)

the process of run-up of a soliton on a vertical wall. T oxx T 2L P03 b '
We now explain the difference between the two modelsgypstituting Eq(54) into the equation yields

(7),(8) and (52). Introducing velocity potentiap that is de-

fined byu= ¢,, we integrate Eq(8) to obtain{ as L= Lax— (8D wx— 3 Lxnsx=0(€°).

th the unidirectional assumption, E5) can be written

{=— @~ %cpi. (54) Neglecting the higher-order term at the right-hand side gives
Boussinesq one-equation model. The fact that the Boussinesq
Substituting the above into E¢?) yields an integrable equa- one equation cannot be used to physically describe the

tion for ¢, head-on collision of solitons has been pointed out before in
Lo Loa 4 the fluid mechanics literaturgl9,2], but the details of the
Pt Pxxt 2 (@)t (@1Px)xT 2 (03)x— 5 Pxxxx= 0- problem, such as the maximum amplitude during the head-on
) o i _ . collision, have not been presented before.

Differentiating with respect tband substituting Eq:54) into In order to model bidirectional solitons on water, a system
the equation gives us has to be integrable and physically correct in both overtaking
1, 2 1 1, 3 and head-on collisions at least to the leading order of the

S S 2(P)x (@1@x)x™ 3 G0 2 (@) perturbation, i.e., to the KdV level. It seems to us that system

+ %(‘P)%)xxxx- (55) (7),(8) is the only serious candidate. It is a natural extension

of the KdV equation from unidirectional solitons to bidirec-

For weakly nonlinear and weakly dispersive water wavestional solitons. Since systeit) is a physical extension of
according to the perturbation scheme in Hab), the order  System(7),(8) from one-space dimension to two-space di-

of the magnitude of different variables and differentiations ismensions, one may have a chance to use systerto de-
scribe oblique interaction of solitons. Its integrability and

[=0(€?), u=0(€), 4,=0(e), &=0(e), exact solutions are interesting topics for further research.
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VI. CONCLUSION only one that is bothexactand physically meaningfufor
water waves to the leadin@<dV) level of the perturbation

lowwviast;urdéb'g'refti'r?nat‘:]zogt:rgzg; S;nnslig:m;%?\rr?]fefagg scheme. Our study shows that the Boussinesq surface-
. - By applying 1 . .'variable equation deserves special attention in the study of
we find the exact solutions of the Boussinesq two-equation)

model with wave elevation and surface fluid velocity as tWobldlrectlonal and obliquely interacting solitons on water.
dependent varleble_s. We present the solutions of smgle- ACKNOWLEDGMENTS
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