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Bidirectional solitons on water
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A theory of bidirectional solitons on water is developed by using an integrable Boussinesq surface-variable
equation. We present an explicit transformation between the system and a member of the Ablowitz-Kaup-
Newell-Segur system, and derive an exact multisoliton solution by using a Darboux transformation. The phase
shifts and the maximum wave heights during the interaction are studied for two-soliton overtaking and head-on
collisions. They agree with the Korteweg-de Vries solution for overtaking collision and the perturbation
solution for head-on collision.
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I. INTRODUCTION

Bidirectional solitary waves on water has been an int
esting issue for many years, and enjoys an extensive lit
ture @1,2#, partially because the model can be used to st
the run-up of ocean waves such as tsunami waves on d
and dams@3#. Existing literature solves the problem for a
approximate solution by using a perturbation method on
Euler equation@1,2#.

In 1965, Zabusky and Kruskal introduced the concept o
soliton for the Korteweg-de Vries~KdV! equation@4#. Two
years later, by using the inverse scattering method on
Schrödinger equation, Gardneret al. ~GGKM! solved the
KdV equation for exactN-soliton solutions@5#, which can be
used to model the interaction of unidirectional solitary wav
on water. Their discovery establishes the mathematical fo
dation of the unidirectional water wave interaction. The Kd
equation is the leading-order approximation of the Eu
equation from a perturbation scheme under the assump
that the wave height is relatively small and the wavelengt
relatively long compared with the water depth. It also a
sumes that the wave propagates in one direction, which is
a good assumption to model the reflection of water waves
a vertical wall. For reflection of water waves, we need
model that allows the bidirectional wave interactions, inclu
ing head-on and overtaking collisions. As far as we know
solid mathematical foundation of the bidirectional wa
wave interaction has not been well-established. That is
focus of this paper.

The Boussinesq one-equation model defined by Eq.~52!
in Sec. V is well known to be integrable and allows bidire
tional soliton solutions@6#, but few people realize that it
solutions of head-on collision are not physically meaning
for water waves~see Sec. V of the paper for details!.

Weakly nonlinear and weakly dispersive waves on a la
of water with a uniform depth~scaled to be 1! can be mod-
eled by generalized Boussinesq equations@7#, in which wave
elevationz and velocity vectoru5(u,v) are unknown func-
tions of space (x,y) and time t. Picking different velocity
results in different systems. Depth-mean, bottom, and sur
velocities are three popular choices of the velocity variab
The corresponding model equations derived by Wu a
Zhang are as follows@8#.
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~a! The $z, ū% system: the depth-mean velocity basis

z t1¹•@~11z!ū#50, ~1!

ūt1ū•¹ū1¹z5 1
3 ¹2ūt . ~2!

~b! The $z, u0% system: the bottom variable basis

z t1¹•@~11z!u0#5 1
6 ¹•¹2u0 , ~3!

u0t1u0•¹u01¹z5 1
2 ¹2u0t . ~4!

~c! The $z, û% system: the surface variable basis

z t1¹•@~11z!û#52 1
3 ¹•¹2û, ~5!

ût1û•¹û1¹z50, ~6!

where¹5(]x ,]y) is a gradient operator, andū, u0 andû are
depth-mean, bottom, and surface velocities, respectively.
three systems allow solitary wave solutions and their int
actions, such as overtaking, head-on, and oblique collisio
But for some systems, the collisions may not be clean.
clean we mean that the solitary waves do not change t
shapes and speeds after the collision and they are not
lowed by any dispersive tail. The only changes after the
teraction are their phase shifts. Whether the collision is cl
depends on the integrability of the system. If a system
integrable and has exact solutions, then the interaction
solitary waves will be clean. For clarity, in this paper w
definesoliton to be aclean interacting solitary wavein an
integrable system. Only when the collision is clean and
solitary waves behave like particles during the interaction
we call them solitons. One has to be aware of the differe
between the two concepts of solitary wave and soliton
soliton is a kind of solitary wave, but a solitary wave ma
not be a soliton depending on whether or not the system
integrable and the interaction is clean.

Given the fact that the three systems are widely used
engineers to study water waves during a coastal and ha
design, the mathematical properties such as integrability
solitary wave~soliton! solutions of the three systems are cr
cial to us. Ironically our understanding about the integrabil
of the three systems is so poor that we only know the pr
erty of the reduced~111! version of the surface-variabl
system,
©2003 The American Physical Society06-1
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z t1@~11z!u#x52 1
3 uxxx , ~7!

ut1uux1zx50. ~8!

This system, thereafter referred to as system~7!,~8!, has been
shown to be integrable and has three Hamiltonian struct
@9,10#. The integrabilities of the original~211! version of~c!
and two other systems,~a! and ~b!, are open questions. A
recent paper obtains some interesting and exact solution
system~c! by using the Painleve´ method@11#. In fact, system
~7!,~8! is shown to be equivalent to the Broer-Kaup~BK!
system@10#. In this paper, we show that the system is a
equivalent to a member of the Ablowitz-Kaup-Newell-Seg
~AKNS! system. Unlike the KdV equation, system~7!,~8! is
derived without the assumption that waves propagate in
direction. Since the system is integrable, allows soliton so
tion, and is bidirectional, it is therefore a natural candid
for modeling bidirectional solitons on water.

With system~7!,~8! as our model, we find that its bidirec
tional soliton solution can be obtained from the Dirac eq
tion, i.e., the AKNS spectral problem. The Schro¨dinger equa-
tion is the first ordinary differential equation that can be us
to derive soliton integrable equations@12#; the AKNS system
is the second one@13#. But no one has found that a memb
of the AKNS hierarchy can be used to describe bidirectio
solitons on water. There is extensive literature on the st
of the solution of system~7!,~8! or the BK system@14#, but
no one has linked the solutions to the bidirectional solito
on water. About 35 years after GGKM, we find that t
AKNS system can be used to generate bidirectional solit
on water. The solution agrees with that of the KdV equat
up to the same level of the perturbation scheme for the
directional solitons. Existing literature uses two unidire
tional solitons from the KdV equation and an interacti
term from the perturbation scheme to describe the head
interaction@2#. To the best of our knowledge, our solution
the only one that is bothexactandphysically meaningfulfor
water waves.

In this paper, we study bidirectional solitons on water
using the model of system~7!,~8!. The properties of a single
soliton are presented in Sec. II. In Sec. III, a multisolit
solution is derived by using the Darboux transformation
an equivalent AKNS system. The mechanics of soliton in
action is discussed in Sec. IV. A comparison with the Bou
inesq one equation is given in Sec. V. Finally, we conclu
the paper in Sec.VI.

II. SINGLE SOLITON SOLUTION

We now study the properties of a single soliton, such
shape, mass, and the relationship between the wave s
and the wave amplitude.

The soliton solution can be obtained by settingz5z(s)
and u5u(s), where s5x2lt and l is the undetermined
wave speed. Substituting these relations into Eqs.~7! and~8!
and integrating the resulting equations once under the re
larity condition at infinity, we obtain

2lz1~11z!u52 1
3 uss, ~9!
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2lu1 1
2 u21z50. ~10!

After eliminating z from these equations, integrating onc
more results in

us
25 3

4 u2~2l122u!~2l222u!. ~11!

This equation has a solitary wave solution as

uB~s;l!5
2~l221!

l1coshA3~l221!s
, ~12!

where the subscriptB indicates the solution of the Bouss
inesq equation. This solution agrees with the one in an
plicit form given in Ref. @8#. Substituting the solution of
velocity into Eq.~10! gives the wave elevation as

zB~s;l!5
2~l221!@11lcoshA3~l221!s#

@l1coshA3~l221!s#2
, ~13!

hereafter referred to as theBoussinesq soliton. The wave
speedl and the wave amplitudea is found from Eq.~13! to
have the relationship

l511 1
2 a. ~14!

Integrating the wave elevation~13! over the whole space
domain gives us the mass under the soliton

mB~l!5E
2`

`

zB~s;l!ds5
4

A3
Al2215

4

A3
A~11a/4!a.

~15!

Differentiating Eq.~13! twice and evaluating at the origin
gives us

zB9 ~0;l!526~22l!~l21!2. ~16!

Therefore, the soliton has a single peak whenl,2 and
double peaks whenl.2. The soliton appears to have som
remarkable features. It is single-peaked when the wave
plitude is not larger than 2, and double-peaked when
wave amplitude is larger than 2. As is well known, th
Boussinesq model is only valid for the water waves w
small amplitude, i.e., wave amplitude smaller than wa
depth~scaled to be 1 here!. Therefore, the new feature of th
double-peaked soliton is not physically meaningful for t
water wave.

Under the assumption of unidirectional wave propagati
Eqs.~7! and~8! can be further reduced to the KdV equatio
by a perturbation scheme@15#,

z t1zx1 3
2 zzx1 1

6 zxxx50, ~17!

which has a solitary wave solution

zK~s;l!5a sech2
A3a

2
s, s5x2lt, l511

a

2
,

~18!
6-2
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where the subscriptK indicates theKdV soliton. Integrating
the wave elevation~18! over the whole space domain give
us the mass under the KdV soliton,

mK~l!5E
2`

`

zK~s;l!ds5
4

A3
A2~l21!5

4

A3
Aa,

~19!

which is slightly smaller than the massmB under the Bouss-
inesq soliton.

The relations between the wave speedl and the wave
amplitudea are the same for both the Boussinesq and K
solitons, i.e.,l511a/2. A comparison between the Bous
inesq soliton~13! and the KdV soliton of Eq.~18! shows that
they agree very well for the waves with small amplitu
except that the former is slightly fatter.

III. MULTISOLITON SOLUTION

With scaling transformation,

A3

2
x→x,

A3

2
t→t, ~20!

Eqs.~7! and ~8! become

z t1@~11z!u#x52 1
4 uxxx , ~21!

ut1uux1zx50. ~22!

The Lax pair of the system is

fxx5~l21lu1 1
4 u22z21!f, ~23!

f t5
1
4 uxf1~l2 1

2 u!fx . ~24!

By using the transformation

u52v, z5211w2 1
2 vx ,

we can convert the system to the BK system,

v t5
1
2 ~v212w2vx!x ,

wt5~vw1 1
2 wx!x .

In Ref. @16#, we solve the BK system by using the Da
boux transformation and obtain a multisoliton solution. B
the result produced with a recursive algorithm is ve
lengthy for interaction among a large number of solito
01630
t

.

Here we adopt a new approach and convert the system
member of the AKNS system and obtain a much clea
version of the multisoliton solution.

Introducing the transformation

q5e*udx, r 52~11z2 1
2 ux!e

2*udx ~25!

or

u5
qx

q
, z5212qr1 1

2 ux , ~26!

we have an equivalent system forq and r,

qt1
1
2 qxx2q2r 2q50, ~27!

r t2
1
2 r xx1qr21r 50, ~28!

which is a member of the AKNS hierarchy. It is well know
that the Lax pair of the system is

cx5Mc, c5~c1 ,c2!T, M5S 2l q

r l
D , ~29!

c t5Nc, N5S 2l21
1

2
qr1

1

2
lq2

1

2
qx

lr 1
1

2
r x l22

1

2
qr2

1

2

D .

~30!

The Darboux transformation on the AKNS system giv
in Ref. @17# is as follows. Let

f85Tf, T5lnI 1(
j 51

n

Tjl
n2 j , Tj5S a2 j 21 a2 j

b2 j 21 b2 j
D ,

~31!

whereI is a 232 identity matrix andf is a solution of Eqs.
~29! and ~30!; thenf8 is a solution of the equation

fx85M 8f8, f t85N8f8, ~32!

whereM 8 andN8 are the same asM andN in Eqs.~29! and
~30!, but with q, r , qx , andr x replaced byq8, r 8, qx8 , and
r x8 .

We assumel iÞl j for iÞ j , i 51,2, . . . ,2n, and denote

f1,j5f1~x,l j !, f2,j5f2~x,l j !.

We define a 2n32n matrix H to be the following:
H5S l1
n21f1,1 l1

n21f2,1 l1
n22f1,1 l1

n22f2,1 ••• f1,1 f2,1

l2
n21f1,2 l2

n21f2,2 l2
n22f1,2 l2

n22f2,2 ••• f1,2 f2,2

A A A A ••• A A

l2n
n21f1,2n l2n

n21f2,2n l2n
n22f1,2n l2n

n22f2,2n ••• f1,2n f2,2n

D . ~33!
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Solving the equations

HS a1

a2

A

a2n

D 5S 2l1
nf1,1

2l2
nf1,2

A

2l2n
n f1,2n

D [A,

HS b1

b2

A

b2n

D 5S 2l1
nf2,1

2l2
nf2,2

A

2l2n
n f2,2n

D [B ~34!

gives usai andbi , i 51,2,3, . . . ,2n. Then

q85q12a2 , r 85r 22b1 , ~35!

where

a25
detH2

detH
, b15

detH1

detH
, ~36!

and H2 is a 2n32n matrix of H with the second column
replaced byA, andH1 is a 2n32n matrix of H with the first
column replaced byB.

For a layer of quiescent water without any waves, wa
elevation isz50 and velocity isu50, and correspondingly
q51 andr 521. Therefore, we take (q,r )5(1,21) as our
initial seed to implement the Darboux transformation. W
this initial seed, we have the following two sets of bas
solutions for the spectral problem~29!,~30!:

f1,j5coshj j , f2,j5cjsinhj j1l jcoshj j ,

j is an odd number, ~37!

f1,j5sinhj j , f2,j5cjcoshj j1l jsinhj j ,

j is an even number, ~38!

wherej j5cj (x1l j t) andcj5Al j
221. The eigenvaluel j is

the wave speed of a soliton. The soliton is right-going ifl j
,21 and left-going ifl j.1. For a single left-going soliton
its amplitudea and speedl satisfy the relationship given b
Eq. ~14!.

We now construct a multisoliton solution with 2m left-
going and 2l right-going solitons. The power of the eigen
value in the Darboux transformation is taken to ben5m
1 l . First we rank the solitons by their amplitudes~or
speeds!. For the 2m left-going solitons, we assumel2m
.l2m21.•••.l1.1. For the 2l right-going solitons, we
assumel2l* ,l2l 21* ,•••,l1* ,21. With the eigenfunc-
tions defined in Eqs.~37!,~38! for both l j and l j* , we can
obtain the soliton solution as follows:
01630
e

u5
qx8

q8
, z5212q8r 81 1

2 ux , ~39!

where

q85112a2 , r 852122b1 .

a2 andb1 are defined by Eq.~36!.
This is the solution for the interaction of an even numb

of solitons in both directions. To obtain an odd number
solitons, we can simply set the first eigenvalue to be 1 fo
left-going soliton and21 for a right-going soliton. In other
words, an odd number of soliton solution can be treated a
even number of solitons in which one of the solitons has z
amplitude.

The Darboux transformation provided in Ref.@16# for the
BK system is of the first order of the eigenvalue. It can
used to generate a two-soliton solution. For
2(m1 l )-soliton solution, the Darboux transformation has
be appliedm1 l times. The result would be very messy. He
due to a nice property of the AKNS system, we only need
apply the Darboux transformation once to generate a solu
with an arbitrary number of solitons. It only involves a
evaluation of the determinant of a 2(m1 l )32(m1 l ) ma-
trix. The result of a multisoliton solution is much clean
than that produced with the Darboux transformation of
BK system@16#.

IV. MECHANICS OF SOLITON INTERACTION

For a single right-going soliton solution, we can takem
50 andl 51 with the following eigenvalues and eigenfun
tions:

l1* 521, f1,151, f2,1521,

l2* 52l,21, f1,25sinhj, f2,25ccoshj2lsinhj.

With some algebra, one may easily verify that the solut
given by Eq.~39! is identical to that obtained with direc
integration given by Eqs.~12!,~13!.

A. Overtaking collision

For a solution with two solitons overtaking collision, w
take m50 and l 51 with the following eigenvalues and
eigenfunctions:

l1* 52l1,21, f1,15coshj1 ,

f2,15c1sinhj12l1coshj1 ,

l2* 52l2,2l1 , f1,25sinhj2 ,

f2,25c2coshj22l2sinhj2 ,

wherel1 andl2 are two positive numbers. The solution
system~7!,~8!, given by Eq.~39!, can be written in a closed
form as
6-4
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u5
2~l22l1!@c2

22c1
2tanh2j1tanh2j22~l2

22l1
2!tanh2j2#

~c22c1tanhj1tanhj2!22~l22l1!2tanh2j2

, ~40!

z5211
c22c1tanhj1tanhj21~l22l1!tanhj2

c22c1tanhj1tanhj22~l22l1!tanhj2
F122

~l22l1!~c1tanhj12l1!~c22l2tanhj2!

c22c1tanhj1tanhj22~l22l1!tanhj2
G1

1

A3
ux , ~41!

j i5
A3

2
ci~x2l i t !, ci5Al i

221, i 51,2, l2.l1.1,
te

sil

r-
s
is

-
the
the
the

o

dV
i-

ead-
f

the

e
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wherex andt have been converted to the original coordina
before the scaling transformation~20!, l1 and l2 are the
speeds of the two solitons, withl2 larger thanl1. The soli-
ton with the speedl2 is taking over the soliton with the
speedl1. The process of overtaking interaction can be ea
seen with the asymptotic limit of the solution~40!,~41!: as
t→2`,

z~x,t !→zB~x2l1t2D1 ;l1!1zB~x2l2t1D2 ;l2!,

u~x,t !→uB~x2l1t2D1 ;l1!1uB~x2l2t1D2 ;l2!,

and ast→1`,

z~x,t !→zB~x2l1t1D1 ;l1!1zB~x2l2t2D2 ;l2!,

u~x,t !→uB~x2l1t1D1 ;l1!1uB~x2l2t2D2 ;l2!,

wherezB(s;l) anduB(s;l) are the wave elevation and su
face velocity of the single-soliton solution given by Eq
~13!,~12!, and the total phase shift of the two solitons
given by the following:

2D15
2

A3~l1
221!

arccosh
l1l221

l22l1

,

2D25
2

A3~l2
221!

arccosh
l1l221

l22l1

. ~42!

Since the mass has been obtained previously in Eq.~15! as

mi5
4

A3
Al i

221, i 51,2,

the conservation of momentum can be easily verified by

2m1D152m2D25 8
3 arccosh

l1l221

l22l1
.

01630
s

y

.

The asymptotic limit of the solution shows that it is sym
metric about the origin. To study the wave properties near
center of an encounter, we find with some algebra that
wave elevation and its first and second derivatives at
origin are

z~0,0!5S 11
1

2
a1D ~a22a1!,

zx~0,0!50,

zxx~0,0!52 3
16 ~a22a1!@8~a223a1!24~a2

227a2a119a1
2!

2a1~2a2
229a2a119a1

2!#,

whereai52(l i21), i 51,2 are the wave amplitudes of tw
solitons. Solvingzxx(0,0)50, i.e.,

a2

a1
531

1

2 S a2

a2

a1
27a219a1D1

1

8
~2a2

229a2a119a1
2!,

~43!

we find the critical amplitude ratioRc is very close to 3 for
the small amplitude waves. The wave elevation att50 has a
single peak ifa2 /a1,Rc and two peaks ifa2 /a1.Rc .

The overtaking collision can also be modeled by the K
equation~17!. The solution can be obtained by applying H
rota’s method@6#; see, e.g., Ref.@2#. In the exact solution of
the KdV equation, the phase shift of soliton 2 is given by

2D25
2

A3a2

ln
~Aa21Aa1!2

a22a1
. ~44!

One may easily show that the phase shift agrees to the l
ing order with that in Eq.~42! given by our exact solution o
the Boussinesq equation. For the wave profile att50, the
critical amplitude ratio, derived in Ref.@2#, is equal to 3 for
the solution of the KdV equation, which also agrees to
leading order with our result in Eq.~43!.

B. Head-on collision

For a solution with two-soliton head-on collision, we tak
m50 and l 51 with the following eigenvalues and eigen
functions:
6-5
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l1* 52l1,21, f1,15coshj1 , f2,15c1sinhj12l1coshj1 ,

l2* 5l2.1, f1,25coshj2 , f2,25c2sinhj21l2coshj2 .

The solution of system~7!, ~8! given by Eq.~39! can be written in a closed form as follows:

u5
2~l11l2!~l2

22l1
22c2

2tanh2j21c1
2tanh2j1!

~c2tanhj22c1tanhj1!22~l11l2!2
, ~45!

z5211
c2tanhj22c1tanhj12l12l2

c2tanhj22c1tanhj11l11l2
F112

~l11l2!~c1tanhj12l1!~c2tanhj21l2!

c2tanhj22c1tanhj11l11l2
G1

1

A3
ux , ~46!

j15
A3

2
c1~x2l1t !, j25

A3

2
c2~x1l2t !, ci5Al i

221, l i.1, i 51,2,
ng

xi

e

e

s
ol

r-
s.
is

.e.,

tur-

n

s,
n-
as
wherex and t are the original coordinates before the scali
transformation. The soliton with speedl1 is moving from
the left to the right. The soliton with speedl2 is moving
from the right to the left. Att50, the two solitons merge
into a single peak. One may verify thatzx(0,0)50, i.e., the
solution is symmetric about the origin. Therefore, the ma
mum amplitude appears at the origin, i.e.,

zmax5z~0,0!5a11a21 1
2 a1a2 , ~47!

which agrees to the leading order with the solution obtain
by using the perturbation method in Refs.@1,2#. For the
head-on collision of two solitons with the same amplitud
a15a25a, the wave elevation att50 can be simplified and
given by

z~x,0!5S 2a1
1

2
a2D sech2F1

4
A3a~41a!xG ,

and the velocity att50 is zero for allx.
After the head-on collision, each soliton experience

backward phase shift. The asymptotic analysis of the s
tion ~45!, ~46! leads to the following limits: ast→2`,

z~x,t !→zB~x2l1t2D1 ;l1!1zB~x1l2t1D2 ;l2!,
~48!

u~x,t !→uB~x2l1t2D1 ;l1!2uB~x1l2t1D2 ;l2!,
~49!

and ast→1`,

z~x,t !→zB~x2l1t1D1 ;l1!1zB~x1l2t2D2 ;l2!,
~50!

u~x,t !→uB~x2l1t1D1 ;l1!2uB~x1l2t2D2 ;l2!,
~51!
01630
-

d

,

a
u-

wherezB(s;l) anduB(s;l) are the wave elevation and su
face velocity of the single-soliton solution given by Eq
~13!,~12!, and the total phase shift of the two solitons
given by

2D15
2

A3~l1
221!

arccosh
l1l211

l11l2

,

2D25
2

A3~l2
221!

arccosh
l1l211

l11l2

.

The conservation of momentum can be easily verified by

2m1D152m2D25 8
3 arccosh

l1l211

l11l2
.

If we expand the phase shift for small amplitude waves, i
ai!1, i 51,2, we will have the leading-order term,

2D1.
1

A3
Aa2, 2D2.

1

A3
Aa1,

which again agrees with the result obtained with the per
bation approach.

V. COMPARISON WITH THE BOUSSINESQ
ONE EQUATION

In addition to system~7!,~8!, the Boussinesq one equatio

z tt2zxx2
3
2 ~z2!xx2

1
3 zxxxx50 ~52!

is often used in the literature to model bidirectional soliton
but the result of the head-on collision is not physically mea
ingful for water waves. The equation is integrable and h
two Hamiltonian structures, see, e.g., Ref.@18#. Its single
soliton solution
6-6
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z~x,t !5a sech2
A3a

2
~x2lt !, l5A11a,11

a

2

has the same shape as that of the KdV soliton with the s
amplitude, but travels at a slightly slower speed than
KdV soliton. Its multisoliton solution has been provided b
Hirota @6#. For example, the solution of two soliton head-
collision is given as

z~x,t !54
k1

2sech2j11k2
2sech2j21Csech2j1sech2j2

@cosh~u/2!1sinh~u/2!tanhj1tanhj2#2
,

j15A3k1~x2l1!t, j25A3k2~x1l2t !,
e

n
-
q
to

ca
ar
o
ro
r

el

-

es

i

01630
e
e

C5sinh~u/2!@~k1
21k2

2!sinh~u/2!12k1k2cosh~u/2!#,

u5
1

2
ln

~l11l2!2112~k12k2!2

~l11l2!2112~k11k2!2
,

l15A11a1, l25A11a2, k15
1

2
Aa1 , k25

1

2
Aa2 ,

wherea1 anda2 are the amplitudes of the two solitons. Th
soliton with amplitudea1 is right-going. The soliton with
amplitudea2 is left-going. One may verify thatzx(0,0)50,
therefore the maximum amplitude during the head-on co
sion appears at the origin, i.e.,
zmax5z~0,0!5a11a212Aa1a2 tanhS 1

4
ln

112a123Aa1a212a21A~11a1!~11a2!

112a113Aa1a212a21A~11a1!~11a2!
D ,

5a11a22 3
2 a1a21O~a3! for a15O~a!, a25O~a!. ~53!
ve-
l
c-
.

ves
esq
the
in

-on

m
ing
the
em
ion
c-
f
di-

d
.

The result is smaller than the physically correct result giv
by Eq. ~47!. To understand this, one may treata1 anda2 as
the contribution from the potential energy of each soliton a
the joint term a1a2 as the contribution from the kinetic
energy of the two solitons. The kinetic-energy part of E
~53! is negative. This is not physical for water waves. Due
the symmetry, the reflection of a solitary wave on a verti
wall can be treated as the head-on collision of two solit
waves with the same amplitude. Since the Boussinesq
equation~52! cannot be used to physically describe the p
cess of the head-on interaction, it cannot be used to desc
the process of run-up of a soliton on a vertical wall.

We now explain the difference between the two mod
~7!,~8! and ~52!. Introducing velocity potentialw that is de-
fined byu5wx , we integrate Eq.~8! to obtainz as

z52w t2
1
2 wx

2 . ~54!

Substituting the above into Eq.~7! yields an integrable equa
tion for w,

w tt2wxx1
1
2 ~wx

2! t1~w twx!x1 1
2 ~wx

3!x2 1
3 wxxxx50.

Differentiating with respect tot and substituting Eq.~54! into
the equation gives us

z tt2zxx2
1
2 ~wx

2!xx2~w twx!xt2
1
3 zxxxx5

1
2 ~wx

3!xt

1 1
6 ~wx

2!xxxx. ~55!

For weakly nonlinear and weakly dispersive water wav
according to the perturbation scheme in Ref.@15#, the order
of the magnitude of different variables and differentiations

z5O~e2!, u5O~e2!, ]x5O~e!, ] t5O~e!,
n

d

.

l
y
ne
-
ibe

s

,

s

wheree is the ratio between the water depth and the wa
length. Sinceu5wx , the magnitude of the velocity potentia
is w5O(e). Assuming the wave is propagating in one dire
tion, i.e.,] t56]x1o(e), then the middle two terms in Eq
~55! can be approximated by

~wx
2!xx5~w t

2!xx1o~e6!, ~w twx!xt5~w t
2!xx1o~e6!.

With the unidirectional assumption, Eq.~55! can be written
as

z tt2zxx2
3
2 ~w t

2!xx2
1
3 zxxxx5o~e6!.

Substituting Eq.~54! into the equation yields

z tt2zxx2
3
2 ~z2!xx2

1
3 zxxxx5o~e6!.

Neglecting the higher-order term at the right-hand side gi
Boussinesq one-equation model. The fact that the Boussin
one equation cannot be used to physically describe
head-on collision of solitons has been pointed out before
the fluid mechanics literature@19,2#, but the details of the
problem, such as the maximum amplitude during the head
collision, have not been presented before.

In order to model bidirectional solitons on water, a syste
has to be integrable and physically correct in both overtak
and head-on collisions at least to the leading order of
perturbation, i.e., to the KdV level. It seems to us that syst
~7!,~8! is the only serious candidate. It is a natural extens
of the KdV equation from unidirectional solitons to bidire
tional solitons. Since system~c! is a physical extension o
system~7!,~8! from one-space dimension to two-space
mensions, one may have a chance to use system~c! to de-
scribe oblique interaction of solitons. Its integrability an
exact solutions are interesting topics for further research
6-7
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VI. CONCLUSION

We study bidirectional solitons on a uniform layer of sh
low water. By applying the Darboux transformation metho
we find the exact solutions of the Boussinesq two-equa
model with wave elevation and surface fluid velocity as t
dependent variables. We present the solutions of sin
soliton and multisoliton interactions. The results agree w
the KdV solution for overtaking collision and the perturb
tion solution for head-on collision. We compare our res
with that of the Boussinesq one-equation model and sh
why the latter does not give a physically correct result
head-on collision. Our bidirectional soliton solution is th
.

ra

c

-

s.

01630
,
n

e-
h

t
w
n

only one that is bothexact and physically meaningfulfor
water waves to the leading~KdV! level of the perturbation
scheme. Our study shows that the Boussinesq surf
variable equation deserves special attention in the stud
bidirectional and obliquely interacting solitons on water.
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